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Electron interaction can be characterized by a parameter
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( e-e Interaction energy is V(r) ~1/r9)

Electrons (g=1) form Wigner crystals at T=0 and small n
whenr >>1 and E, >>E,,

SHe and “He (g>2 ) are crystals at large n



a. Transitions between the liguid and the crystal
should be of first order.

b. As a function of density 2D first order phase
transitions in systems with dipolar or Coulomb
Interaction are forbidden.
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There are 2D electron phases intermediate between
the Fermi liquid and the Wigner crystal
(micro-emulsion phases)




Phase diagram of 2D electrons in MOSFET's . (T=0)

T

Inverse distance MOSFET’s
to the gflte 1/d FERMILIQUID Important

for applications.

- correlated
electrons.

WIGNER CRYSTAL

Microemulsion phases.
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Phase separation in the electron liquid.

crystal

phase separated region.
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There Is an interval of electron densities n,<n<n, near
the critical n_.where phase separation must occur



To find the shape of the minority phase one must minimize

the surface energy at a given area of the minority phase

the case of dipolar interaction
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v> 0 Is the microscopic surface energy
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At large L the surface energy Is negative!



Elementary explanation: Finite size corrections to the capacitance
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This contribution to the surface energy is due to a
finite size correction to the capacitance of the capacitor.
It IS negative and Is proportional to —R In (R/d)



Coloumb case
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S, and S_are area of the minority and the majority phases,
n,and n, are average and critical densities,
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At large area of a minority phase the surface energy is

1

negative.

Single connected shapes of the minority phase are

unstable. Instead there are new electron micro-emulsion
phases.




The characteristic size of the droplets Is
R oc de”,




Mean field phase diagram of microemulsions

A sequence A sequence ®e0
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Transitions are continuous.
They are similar to Lifshitz points.



T and H, dependences of the crystal’s area.

(Pomeranchuk effect).

The entropy of the crystal is of spin origin and much
larger than the entropy of the Fermi liquid.

1l

Sy >>S,; My >M,

Il

a. As T and H increase, the crystal fraction grows.

b. Atlarge Hthe spin entropy is frozen and the
crystal fraction is T- independent.



Several experimental facts suggesting

non-Fermi liquid nature 2D electron liquid

at small densities :



T-dependence of the resistance of 2D electrons at large

r, in the “metallic” regime (G>>e?/ h)
Kravchenko et al Gao at al, Cond.mat 0308003
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T-dependence of the resistance of 2D p-GaAs layers at large

r. in the “metallic” regime .
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Physics Department, University of California, Riverside, CA 92507
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X. P. A. Gao,"* G. S. Boebinger,?2 A. P. Mills Jr.,* and A. P. Ramirez, L. N. Pfeiffer, K. W. West?

Cond-mat/0501686

2D holes in a 10nm GaAs quantum well
(b) resistivity vs. T at B=0

hole density p = 1.3*10"/cm’

XX

calculated hole-phonon scattering resistivity
for deformation constant D=6eV

Longitudinal resistivity p_ [/ ]

Temperature T [K]



B, dependences of the resistance of SI MOSFET's at different electron

concentrations.

Pudalov et al.

A factor of order 6.

There Is a big positive magneto-resistance which saturates
at large magnetic fields parallel to the plane.



B, dependence of 2D p-GaAs at large r, and small wall thickness.
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There is a big positive magneto-resistance which saturates
at large magnetic fields parallel to the plane.



Comparison T-dependences of the resistances of Si MOSFET’s

at zero and large B,
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The parallel magnetic field suppresses the temperature dependence of

the resistance of the metallic phase. The slop

es differ by a factor 100 !
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The slope of the resistance dR/dT is dramatically
suppressed by the parallel magnetic field.

It changes the sign. Overall change can as much as
factor 50 in St MOSFET’s and a factor 10-100 in P-GaAs !




Do materials exist where the resistance has dielectric

values R>>h/e?and yet still increases as the temperature increases ?
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If itis all business as usual:

Why is there an apparent metal-insulator transition?

Why is there such strong T and B, dependence at low T,
even in “metallic” samples with G>> e?/h?

Why is the magneto-resistance positive at all?

Why does B, so effectively quench the T dependence
of the resistance?



Hopping conductivity regime in MOSFET’s
Magneto-resistance in the parallel and the perpendicular tmagnetic field
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Connection between the resistance and the electron

viscosity n(T) In the semi-quantum regime.

The electron mean free path |_. ~n? and hydrodynamics
description of the electron system works !
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Stokes formulain 2D case: F o
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p(T) o (1) e’n’ In(1i/Nia2)

In classical liquids 7(T) decreases exponentially with T.
In classical gases n(T) increases as a power of T.
What about semi-quantum liquids?



If the liquid is strongly correlated

E O = E o E
= <L — r1/2 <LK oot

S

® Is the plasma frequency

If the liquid is not degenerate
but it is still notagas ! Itis also not a classical liquid !

Such temperature interval exists both in the case of
electrons with r, >>1 and in liquid He



Viscosity of gases (T>>U) Iincreases as T increases

Viscosoty of classical liquids (T, , h®y << T<< U) decreases
exponentially with T (Ya. Frenkel)
n ~ exp(B/T)

Semi-quantum liquid: E-<<T <<h 06 << U: (A.F. Andreev)

n~ 1T
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Comparison of two strongly correlated liquids:

He3 and the electrons at E-<T < E ot
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Experimental data on the viscosity of Hedin the
semi-quantum regime (T > 0.3 K) are unavailable!?

A theory (A.F.Andreev). n o %



T-dependence of the resistance of 2D p-GaAs layers at large

r. in the “metallic” regime .
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the double p-GaAs layers.



B, dependence of the resistance and drag resistance of

2D p-GaAs at different temperatures
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FIG. 1. In-plane magnetotransport data for p,, = 2.15%
109 cm™2 at T = 80, 175, 250, and 400 mK. (a) Insct: p vs
By. B, and B* are indicated by the arrow and the dashed line,
respectively. Main plot: Data from inset normalized by its
B = 0 value. (b) Insel: Corresponding data for pp vs B).
Main plot: Data from inset normalized by its By = 0 value.
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FIG. 2. pand pp vs By at T = 80 mK for different densilties.
(a) Inset: p vs By for (from bottom to top) p = 3.25, 2.15, 1.75,
1.5, and 1.2 ¥ 10'° cm™2. Main plot: Data from inset normal-
ized by its B = 0 value. (b) Inset: pp, vs By for (from bottom to
top) p,, = 2.15, 1.75, 1.5, and 1.2 X 10'® ¢cm~2. Main plot: Data
from inset normalized by its By = 0 value. Density for each
trace is indicated in the legend.
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T-dependence of the drag resistance in double layers of p-GaAs

at different B||
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If it is all business as usual:

Why the drag resistance is 2-3 orders of magnitude larger
than those expected from the Fermi liquid theory?

Why is there such a strong T and B, dependence of the drag?
Why is the drag magneto-resistance positive at all?

Why does B, so effectively quench the T dependence
of drag resistance?

Why B, dependences of the resistances of the individual
layers and the drag resistance are very similar

An open question: Does the drag resistance vanish at T=07?




The drag resistance is finite at T=0




A theoretical picture of the T dependence of
the drag resistance in pure samples
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Questions:

What is the effective mass of the bubbles?

What are their statistics?

Is the surface between the crystal and the liquid a
quantum object?

Are bubbles localized by disorder?




effective droplet’s mass m*

At T=0 the liquid-solid surface is a quantum object.

a. If the surface is quantum smooth, a motion WC droplet corresponds to
redistribution of mass of order

m" =~ mnzR°
b. Ifitis quantum rough, much less mass need to be redistributed.
* 2
m =m(n, —n,)zR t 1/d
nd°=L m~m T~
wWC FL
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In Coulomb case m ~ m*



Properties of “quantum melted” droplets of Fermi

liquid embedded in the Wigner crystal :

Droplets are topological objects with a definite statistics

The number of sites in such a crystal and the number of electrons_are
different .
Such crystals can bypass obstacles and cannot be pinned

This is similar to the scenario of super-solid He (A.F.Andreev and
|.M.Lifshitz). The difference is that in that case the zero-point
vacancies are of quantum mechanical origin.



Conclusion:

There are pure 2D electron phases which

are intermediate between the Fermi liquid
and the Wigner crystal .




(Unsolved problems):

1. Quantum hydrodynamics of the micro-emulsion phases.

2. Quantum properties of WC-FL surface. Is it guantum smooth
or guantum rough? Can it move at T=0 ?

. What are properties of the microemulsion phases in the presence
of disorder?

. What is the role of electron interference effects in 2D microemulsions?
. Is there a metal-insulator transition in this systems?

Does the gquantum criticality competes with the single particle
Interference effects ?




